所加工的低碳合金钢18Cr2Ni4WA 含有较多的 Cr、Ni 等合 金元素,使用渗碳炉以后具有良好的力学和工艺性能,是生产高速重载 零部件的重要材料。高速重载零部件的工作环境往往 较为恶劣,受力状态复杂,复杂的工况不仅要求工件表 面具有高的硬度和耐磨性,而且要求心部有足够的强 度和良好的韧性,那么渗碳炉处理的工艺是怎么样的呢?1) 18Cr2Ni4WA 钢渗碳后,经高温回火、淬火、深 冷和低温回火处理后,渗碳层深度几乎不受影响,表面 残留奥氏体含量显著降低,低于14. 62%。2) 对比两种 18Cr2Ni4WA 钢渗碳后的热处理工 艺,经 680 ℃ × 5 h 两次高温回火 + 860 ℃ 淬火 + -115. 3 ℃深冷 + 160 ℃低温回火工艺处理后,试 样表面硬度为64. 2 HRC,渗碳层深度为 0. 86 mm,符 合工艺目标。并得到由针状回火马氏体、少量残留奥 氏体和弥散分布的颗粒状碳化物组成的渗碳层组织和 由低碳板条状回火马氏体组成的心部组织,兼顾了渗 碳层表面的高硬度和心部的强韧性。
给大家介绍下热处理加热温度三种现象:1、一般过热:热处理加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。粗大的奥氏体晶粒会导致钢的强韧性降低,脆性转变温度升高,增加淬火时的变形开裂倾向。而导致过热的原因是炉温仪表失控或混料(常为不懂工艺发生的)。过热组织可经退火、正火或多次高温回火后,在正常情况下重新奥氏化使晶粒细化。 2、断口遗传:热处理有过热组织的钢材,重新加热淬火后,虽能使奥氏体晶粒细化,但有时仍出现粗大颗粒状断口。产生断口遗传的理论争议较多,一般认为曾因加热温度过高而使MnS之类的杂物溶入奥氏体并富集于晶界面,而冷却时这些夹杂物又会沿晶界面析出,受冲击时易沿粗大奥氏体晶界断裂。 3 粗大组织的遗传:有粗大马氏体、贝氏体、魏氏体组织的钢件重新奥氏化时,以慢速加热到常规的淬火温度,甚至再低一些,其奥氏体晶粒仍然是粗大的,这种现象称为组织遗传性。要消除粗大组织的遗传性,可采用中间退火或多次高温回火处理。
脉冲电源是全逆变式,频率可以达到20KHz。频率高有以下好处:1. 温度均匀性好,表面电流密度分布的更均匀,有利于改善炉内产品温度均匀性,尤其是针对一些氮化面积较大的产品效果显著。2.渗氮速度快,浅渗层渗氮速度快,因为轰击频率高,金属表面活化铁离子密度高,与氮离子结合速度快,提高渗速。3. 弱化空心阴极效应,弱化空心阴极效应,尤其是针对一些尖角、孔洞比较多的产品,有明显的改善效果。4.降低产品灼伤风险,增强了打弧关断频率,减少因为工件表面打弧导致的产品灼伤风险。5.清理作用,对工件表面有较强的清理作用,氮化后产品外观好。6.对公共电网冲击少,因为开关速度快,对电源及电网的冲击少。
主要用于碳钢、铸铁、粉未冶金等材料的软氮化处理。的结构简介: 氮化炉由炉体、气控柜和电控三部门组成。炉体部门主要由包括炉壳、炉衬采用节能型超轻质耐火砖、硅钢铝纤维与优质保温材料组成复合炉衬,炉罐用高强度耐热板焊接而成;炉盖上设有强力搅拌风机,各气管道接口均采用快速转换接头连接使用利便快捷。排气管上设有一燃烧废气装置和旁接u形压力计接口;炉盖上还设有一热电偶,用以检测罐内的温度。炉盖的超吊靠车间行车进行气控柜内设置有各种流量计、气控阀、干燥罐等元件。电控部门主要包括温控、操纵及气控三部门。
淮安氮化炉使用的气体渗碳是在富碳介质中使碳渗入低碳(cD(C)一0.1~0.3)或低碳合金钢的表面,使其在保持心部强韧性的条件下获得高硬度的表层,从而提高工件的耐磨性和疲劳强度,是车辆传动件常采用的热处理方法之一。但传统的低压真空渗碳炉使用的气体渗碳方法突出的弊端是工艺时间长,能源消耗大,已成为广大热处理工作者长期以来不断探索解决的问题。感应加热内热式真空渗碳是将气体渗碳、真空热处理、感应加热技术在新的平台上进行集成创新,氮化炉价格建立一种全新的金属表面强化工艺,即通过采用高效的感应加热方式实现快速加热;通过将感应线圈放置在炉内实现仅对工件加热,而炉内其他部分及炉体温度较低,达到能源的较大利用和炉体结构的简化;通过在真空环境下的加热和通人渗碳气体,实现工件表面的净化和活化,达到碳原子的快速吸收和较小的变形,实现优质、高效、节能、降耗、减污的先进化学热处理生产。